3.9.80 \(\int \frac {A+B x}{x \sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=77 \[ \frac {B \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}}-\frac {A \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {843, 621, 206, 724} \begin {gather*} \frac {B \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}}-\frac {A \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(x*Sqrt[a + b*x + c*x^2]),x]

[Out]

-((A*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/Sqrt[a]) + (B*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt
[a + b*x + c*x^2])])/Sqrt[c]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {A+B x}{x \sqrt {a+b x+c x^2}} \, dx &=A \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx+B \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx\\ &=-\left ((2 A) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )\right )+(2 B) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )\\ &=-\frac {A \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a}}+\frac {B \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 75, normalized size = 0.97 \begin {gather*} \frac {B \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{\sqrt {c}}-\frac {A \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+x (b+c x)}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(x*Sqrt[a + b*x + c*x^2]),x]

[Out]

-((A*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])])/Sqrt[a]) + (B*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt
[a + x*(b + c*x)])])/Sqrt[c]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.31, size = 80, normalized size = 1.04 \begin {gather*} \frac {2 A \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}-\frac {\sqrt {a+b x+c x^2}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {B \log \left (-2 \sqrt {c} \sqrt {a+b x+c x^2}+b+2 c x\right )}{\sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(A + B*x)/(x*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*A*ArcTanh[(Sqrt[c]*x)/Sqrt[a] - Sqrt[a + b*x + c*x^2]/Sqrt[a]])/Sqrt[a] - (B*Log[b + 2*c*x - 2*Sqrt[c]*Sqrt
[a + b*x + c*x^2]])/Sqrt[c]

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 468, normalized size = 6.08 \begin {gather*} \left [\frac {B a \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) + A \sqrt {a} c \log \left (-\frac {8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{2}}\right )}{2 \, a c}, -\frac {2 \, B a \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - A \sqrt {a} c \log \left (-\frac {8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{2}}\right )}{2 \, a c}, \frac {2 \, A \sqrt {-a} c \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{2} + a b x + a^{2}\right )}}\right ) + B a \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right )}{2 \, a c}, \frac {A \sqrt {-a} c \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{2} + a b x + a^{2}\right )}}\right ) - B a \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right )}{a c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(B*a*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) + A*sq
rt(a)*c*log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2))/(a*c),
-1/2*(2*B*a*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - A*sqrt(a
)*c*log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2))/(a*c), 1/2*
(2*A*sqrt(-a)*c*arctan(1/2*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) + B*a*sqrt(c)*l
og(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c))/(a*c), (A*sqrt(-a)*c*arc
tan(1/2*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) - B*a*sqrt(-c)*arctan(1/2*sqrt(c*x
^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)))/(a*c)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:inde
x.cc index_m operator + Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.05, size = 67, normalized size = 0.87 \begin {gather*} -\frac {A \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )}{\sqrt {a}}+\frac {B \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/x/(c*x^2+b*x+a)^(1/2),x)

[Out]

B*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-A/a^(1/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))/x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 1.47, size = 66, normalized size = 0.86 \begin {gather*} \frac {B\,\ln \left (\frac {\frac {b}{2}+c\,x}{\sqrt {c}}+\sqrt {c\,x^2+b\,x+a}\right )}{\sqrt {c}}-\frac {A\,\ln \left (\frac {b}{2}+\frac {a}{x}+\frac {\sqrt {a}\,\sqrt {c\,x^2+b\,x+a}}{x}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x)/(x*(a + b*x + c*x^2)^(1/2)),x)

[Out]

(B*log((b/2 + c*x)/c^(1/2) + (a + b*x + c*x^2)^(1/2)))/c^(1/2) - (A*log(b/2 + a/x + (a^(1/2)*(a + b*x + c*x^2)
^(1/2))/x))/a^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B x}{x \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((A + B*x)/(x*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________